A class of exactly solvable Schrödinger equation with moving boundary condition
نویسندگان
چکیده
منابع مشابه
Quasi exactly solvable matrix Schrödinger operators
Two families of quasi exactly solvable 2 × 2 matrix Schrödinger operators are constructed. The first one is based on a polynomial matrix potential and depends on three parameters. The second is a one-parameter generalisation of the scalar Lamé equation. The relationship between these operators and QES Hamiltonians already considered in the literature is pointed out.
متن کاملExactly Solvable Schrödinger Equation with Hypergeometric Wavefunctions
In this work, the canonical transformation method is applied to a general second order differential equation (DE) in order to trasform it into a Schrödinger-like DE. Our proposal is based on an auxiliary function g(x) which determines the transformation needed to find exactly-solvable potentials associated to a known DE. To show the usefulness of the proposed approach, we consider explicitly th...
متن کاملA Class of Exactly-Solvable Eigenvalue Problems
The class of differential-equation eigenvalue problems −y′′(x)+x2N+2y(x) = xNEy(x) (N = −1, 0, 1, 2, 3, . . .) on the interval −∞ < x < ∞ can be solved in closed form for all the eigenvalues E and the corresponding eigenfunctions y(x). The eigenvalues are all integers and the eigenfunctions are all confluent hypergeometric functions. The eigenfunctions can be rewritten as products of polynomial...
متن کاملDiscrete supersymmetries of the Schrödinger equation and non - local exactly solvable potentials
Using an isomorphism between Hilbert spaces L and l 2 we consider Hamiltonians which have tridiagonal matrix representations (Jacobi matrices) in a discrete basis and an eigenvalue problem is reduced to solving a three term difference equation. Technique of intertwining operators is applied to creating new families of exactly solvable Jacobi matrices. It is shown that any thus obtained Jacobi m...
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2008
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2007.12.002